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Pose-aware Attention Network for Flexible
Motion Retargeting by Body Part
Lei Hu†, Zihao Zhang†, Chongyang Zhong, Boyuan Jiang, Shihong Xia∗,

Abstract—Motion retargeting is a fundamental problem in computer graphics and computer vision. Existing approaches usually have
many strict requirements, such as the source-target skeletons needing to have the same number of joints or share the same topology.
To tackle this problem, we note that skeletons with different structure may have some common body parts despite the differences in
joint numbers. Following this observation, we propose a novel, flexible motion retargeting framework. The key idea of our method is to
regard the body part as the basic retargeting unit rather than directly retargeting the whole body motion. To enhance the spatial
modeling capability of the motion encoder, we introduce a pose-aware attention network (PAN) in the motion encoding phase. The PAN
is pose-aware since it can dynamically predict the joint weights within each body part based on the input pose, and then construct a
shared latent space for each body part by feature pooling. Extensive experiments show that our approach can generate better motion
retargeting results both qualitatively and quantitatively than state-of-the-art methods. Moreover, we also show that our framework can
generate reasonable results even for a more challenging retargeting scenario, like retargeting between bipedal and quadrupedal
skeletons because of the body part retargeting strategy and PAN. Our code is publicly available1.

Index Terms—Deep Learning, Motion Processing, Motion retargeting
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1 INTRODUCTION

A Rticulated motion data plays a crucial role in computer
animation, virtual reality and the game industry, since

most of the virtual characters are driven by the articulated
skeletons. To get the motion data, current methods are
mainly two-fold. The first type is to capture human motions
using a motion capture system, the other one is to create
animations by artists using key-frame technology. However,
both methods require a major expenditure of time and effort,
and the obtained motion data cannot be directly applied
to each other between skeletons because of the differences
in structure. Motion retargeting, as one of the motion-
reusing technology, has been regarded as a promising way
that enables the transfer of a character’s motion to another
skeleton. It is widely used as a motion pre-processing tool
since it can integrate various motion datasets [1] for neural
network training. In physical simulation and control [2],
[3], [4], motion retargeting also plays an important role in
transferring the input signals from the real environment into
the simulation setting.

Though motion retargeting is a long-standing problem
that has been studied for decades, there are still two main
issues that restrict the large-scale application of this tech-
nology. First, motion retargeting essentially requires flexible
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Fig. 1. Feature Pooling at body part level. We pool the joint-wise features
(black dots) into body part tokens (cyan dots) to build the shared latent
codes in terms of body parts.

source-target correspondence. However, we observe that
previous motion retargeting methods [5], [6], [7] have some
strict requirements, such as the source-target skeletons need-
ing to have the same number of joints or share the same
topology. These requirements will reduce the flexibility of
the motion retargeting model and limit the usage scenarios.
Another issue is the balance between the accuracy and
automation of motion retargeting. Traditional works [8], [9],
[10] regard motion retargeting as a space-time optimization
problem and employ the inverse kinematic technology to
precisely satisfy the user-given constraints. However, users
need to design the energy functions manually, making the
whole process semi-automated. Recent works [5], [6], [7],
[11] achieve automatic motion retargeting using the deep
learning methods. However, the retargeting accuracy is still
limited due to the lack of spatial modeling of articulated
motion.

https://github.com/hlcdyy/pan-motion-retargeting
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To tackle the above issues, it first needs to define a
flexible correspondence between the source and target skele-
tons. Therefore, we propose to treat the body part as the
basic retargeting unit to extract shared latent codes cross
structure (see Figure 1). Our key observation supporting
this strategy is that skeletons with different structure still
have some common body parts sharing the same semantic
meaning. Using the body part as the retargeting unit not
only helps us improve the flexibility of retargeting, but also
gives the neural network a geometric prior. To enhance
the spatial modeling capability of the model, we further
introduce a novel pose-aware attention network (PAN). In-
spired by PFNN [12] and its follow-up works [13], [14], [15],
we find that the dynamic motion modeling based on the
state/pose is beneficial for generating high-quality motions.
Therefore, we use the proposed PAN to dynamically predict
the weights of each joint for feature blending and pooling.
Moreover, the dynamic spatial modeling meets our intuition
that the contribution of a fixed joint to its corresponding
body part varies with the body part’s motion.

Given an articulated motion of the source skeleton, we
first process the motion frame-by-frame using our PAN to
extract the spatial features at the body part level. Specifi-
cally, we introduce a trainable parameter for each body part
called ”body part token” (see cyan dots in Figure 1) and
compute the dot-product attention weights together with
the hidden features of the inner-part joints. Through several
attention layers, the joint-wise features will be blended into
the ”body part tokens” by weighted summation. For feature
pooling, we keep the parameters of the body parts, i.e.
”body part tokens” and discard the hidden features of joints
in the last layer, so that these ”body part tokens” can be
shared among skeletons with different structure. Then, we
further compress the ”body part tokens” along the temporal
dimension by 1D convolution to extract the shared motion
code. Finally, we combine the shared motion code and the
deep representation of the target skeleton offsets to generate
the retargeted motion by the motion decoder of the target
structure.

Since paired motion data is hard to acquire in this task,
we train our architecture in an unsupervised manner and
use a motion discriminator for each articulated structure
to ensure the retargeted motion falls into the correspond-
ing motion manifold. Experiments on Maximo [16], Hu-
man3.6M [17], lafan1 [18], and quadruped [13] datasets
show that our method can achieve state-of-the-art perfor-
mance.

Our approach can effectively address the issues men-
tioned above, enabling automatic, accurate, and flexible
retargeting. The main contributions of this work can be
summarised as follows:

1. We propose a novel pose-aware attention network
(PAN) that can dynamically extract the spatial features of
motion, which is beneficial for improving the accuracy of
automatic retargeting.

2. We propose a powerful motion retargeting framework
that uses body parts as retargeting units, improving the flex-
ibility in processing different source-target structure pairs.

3. Through extensive experiments, we show that our
method can generate high-quality results for human mo-
tion retargeting task. Because of our body-part retargeting

strategy and pose-aware attention network, we find that our
method can even fulfill the retargeting task between bipedal
and quadrupedal skeletons. To the best of our knowledge,
we are the first to solve such motion retargeting problems
without manual effort.

2 RELATED WORK

In this section, we will review related research on motion
retargeting, motion processing with body parts, and dy-
namical motion modeling methods that are similar to our
thinking.

2.1 Motion Retargeting
One of the earliest motion retargeting methods was pro-
posed by Gleicher [8], which regards retargeting as a space-
time constraint problem. As most of the constraints in retar-
geting are kinematic related, inverse kinematics solver [9],
[10], [19] is widely adopted for this task. Besides, there
is some literature [20], [21] that takes dynamics into con-
sideration for preserving essential physical properties of
the motion during retargeting. When the source and target
skeletons differ greatly, the key-framing technique plays an
important role in many works [19], [22], [23]. Yamana et
al. [22] combine the key-frame selection with a GPLVM-
based model to learn the static and dynamic mapping
between the source and target poses for anthropomorphic
characters’ retargeting. Yeongho Seol et al. [23] ask the users
to manually specify several features representing the source
motion and build a paired data library through key-framing.
However, most traditional motion retargeting approaches
rely on hand-crafted constraints and iterative solvers, mak-
ing the workflow semi-automatic and tedious.

Recently, with the fast development of deep learning and
articulated motion datasets, end-to-end motion retargeting
methods have achieved remarkable success. Jang et al. [24]
use convolutional encoder-decoder architecture to model
the source motion and limb ratios for retargeting between
skeletons with different bone lengths. Villegas et al. [5]
train an RNN-based encoder-decoder network to alternate
inverse kinematics module. Aberman et al. [11] propose
the skeleton-aware convolution and pooling operations to
extract a primal skeleton for handling topologically equiv-
alent retargeting. In order to reduce interpenetration and
preserve self-contacts, Villegas et al. [7] combine iterative
optimization and geometry-conditioned RNN to achieve
real-time retargeting between different mesh geometries.
Though the deep learning-based methods achieve automatic
motion retargeting, the lack of spatial modeling of the
skeletal structure makes the retargeting accuracy limited.
Skeleton-aware network [11] can handle different structure
to some extent, but the flexibility of their correspondence
strategy is limited because all its operations are based on
the neighborhoods in the kinematic chain. These operations
do not work well for constructing correspondence in some
cases, such as retargeting between quadrupeds and bipeds.

2.2 Motion Processing with Body Parts
Subdividing the whole body motion into several partial
movements is widely used in motion splicing and style
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Fig. 2. The overall architecture of our motion retargeting framework. The transparent meshes are overlaid on the first frame of source motion and
the canonical pose of the target skeleton to highlight the differences between skeleton A and B. The motion code HA

M produced by EA
M will be

modified by skeleton code HB
S in an additive manner, i.e, H = HA

M +HB
S (HB

S will first be replicated along the temporal axis.)

transfer. Based on the source of the partial movements, we
can divide the body part-based methods into two categories.
1. The movement of each body part comes from different
motions. 2. The movement of each body part comes from a
single motion. Our body part-based retargeting method falls
into the second category.

For the first category, the difficulty of splicing lies in
choosing the appropriate combination of partial motions,
since the movements of the individual body parts are
usually coupled with each other. To tackle this problem,
traditional methods use segmentation, clustering [25], and
example-based techniques [26], [27] to measure the simi-
larity of partial motions to ensure the naturalness of the
splicing motion. However, these splices are often performed
in the original space or linear embedding space reduced
by PCA, thus limiting the splicing to analogous motions.
Thanks to the non-linear modeling of deep neural networks,
recent methods have tried to splice the motion features
of different body parts in the hidden space. Ye et al. [4]
use three points of the VR device as input and predict
the movement of the upper and lower body respectively,
and then splice them together. Motion Puzzle [28] transfers
the style of each body part from different motion clips to
the content motion by graph convolutional network. Lee et
al. [29] propose a novel part assembler layer for splicing the
part motions from the different creatures. This assembler
can search for the spatial alignment among body parts after
the temporal alignment. These works show that it is a good
choice to combine the motion features of different body
parts in deep motion space.

There is no ambiguity in the splicing phase for the
second category because all the partial movements come
from the same motion clip. However, if the target skeleton
is different from the source motion skeleton, we still need
to modify the motion features of each body part to match
the target skeleton. Abdul-Massih et al. [30] decompose
motion style into a set of features present in distinct groups
of body parts and use optimization methods to solve the
retargeting between skeletons with different morphologies.
However, this approach requires manual feature design

and spatial-temporal alignment, making the whole process
semi-automatic. Liao et al. [31] propose a skeleton-free
pose transfer network to automatically learn the skinning
weights and transformation in terms of deformation parts.
But, it can only process a single pose rather than motion. We
regard the body parts as retargeting units and employ deep
neural networks to automatically construct the shared latent
spaces between skeletons with different structure, but have
common body parts.

2.3 Dynamical Motion Modeling
In motion retargeting, we need to encode the source mo-
tion features, which is actually a spatio-temporal modeling
process. Dynamic modeling of articulated motion has been
included in many studies of various tasks. In this part,
we will briefly review some of the methods related to
our methodological ideas. Dynamical motion modeling is
crucial for many applications, including style transfer, mo-
tion synthesis, prediction, etc. We divide dynamic motion
modeling into two categories, one for dynamically changing
the network’s weights such as PFNN [12], and the other
is dynamically changing the feature vectors such as Trans-
fomer [32].

For dynamically changing the control weights, Xia [33]
proposed an online mixture-of-autoregressive model for
real-time motion style interpolation and control by blending
the parameters of distinctive styles. PFNN [12] has achieved
remarkable success in data-driven motion synthesis thanks
to its phase-functioned model. It works by generating the
weights of a regression network at each frame as a function
of the phase, thus enabling smooth transitions between
different motion states with good stability and produc-
ing high-quality motion. Follow-up works [13], [14], [34],
[35] employ a gating network to automatically learn the
blending coefficients of different experts which allows the
network to cluster the poses based on different states or
phases. The graph convolutional neural network is also a
common tool for modeling human body motion, but the
adjacency matrix of the vanilla network is fixed. To make the
graph connections more flexible to portray the relationships
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between joints, Lei Shi et al. [36] add a learnable matrix
and a data-dependent graph to change the adjacency matrix
based on the input data. Recently, Zhong et al. [15] introduce
the gating adjacency matrix into the graph convolution
network for motion prediction, and the core idea is also
to dynamically change the graph convolutional weights to
improve the expression of the model. Although the mixture-
of-experts model has excellent motion modeling capabili-
ties, the size of the model increases proportionally with the
number of experts.

The idea of the Transformer [32] is similar to the mixture-
of-experts model, except that the dynamic modeling is
achieved by generating attention weights through com-
puting the dot products of the query with key vectors.
The advantage of this model is that the network size can
be controlled to stack more layers. This architecture is
currently widely used for pose estimation [37], [38], [39],
action-gesture recognition [40] and motion synthesis [41].
In motion style transfer, Jang et al. [28] use attention net-
work transfers the locally semantic style features into the
decoded content features. In this work, we employ the self-
attention mechanism in source motion encoding process
and incorporate the body part strategy to achieve pose-
aware spatial feature extraction for motion retargeting. The
proposed pose-aware attention mechanism can dynamically
generate the attention weights based on the input poses
to aggregate the joint-wise features at the body part level.
Because of the dynamic spatial modeling, we are able to
achieve more accurate motion retargeting.

2.4 Other Related Works
There are some loosely related problems including mesh de-
formation transfer and 2D motion retargeting. Deformation
transfer [42], [43], [44], [45] aims to adapt the deformation
from a source mesh model to another mesh. These meth-
ods often require building dense correspondences between
the meshes. Recently, Gao [45] proposes a method that
can transfer the deformation between two unpaired mesh
models without defining the correspondences. The cycle
consistency loss used in their work is similar to ours, except
that we impose consistency constraints on both the latent
space and the original rotation space and focus on the
articulated skeleton.

There are also some works [46], [47] that bypass the
explicit 3D motion representation to directly implement 2D
motion retargeting, but these often incorporate viewpoint
and texture generation. In contrast, we mainly focus on 3D
motion retargeting in this work.

3 DATA REPRESENTATION AND OVERVIEW

In this section, we will first describe the representation of
articulated motion data, skeleton representation, and the
symbols used in our paper. Then, we will further introduce
the overview architecture of our method.

3.1 Data representation
We denote an articulated motion of length T as MT =
[M1,M2, ...,MT ] and suppose that the skeleton A belonging
to structure A has J joints. The motion attributes used in

our representation include local joint rotations of each joint
represented by unit quaternions denoted as QT×J×4, global
motion velocity V T×1×3 of the root in x,y, and z direc-
tions and additional angular velocity RT×1×1 representing
the rotation velocity around the axis perpendicular to the
ground (y-axis in our setup). We concatenate the velocity V
and angular velocity R in the last dimension to represent
a new combined velocity vector V̄ T×1×4, and the motion
MT can be written as MT = [Q, V̄ ] ∈ RT×(J+1)×4 if we
regard the root velocity vector V̄ as an additional ”joint”.
In articulated skeleton representation, the skeleton topology
and bone lengths are usually represented by a set of offsets
S ∈ RJ×3, the offset of each joint in the skeleton is the
3D vector relative to its parent’s coordinate frame in the
kinematic chain. The task of motion retargeting is adapting
a motion MA

T from structure A with offsets SA ∈ RJ×3 to
skeleton B ∈ B with offsets SB ∈ RL×3. The retargeted
motion is MA 7→B

T ∈ RT×(L+1)×4 where the joint number L
may not be equal to J , but has the same time length T .

In humanoid motion retargeting, we divide the whole
body into N=6 body parts based on the main limbs,
which are the head, the spine, the left/right arms, and the
left/right legs. Specially, we attribute the velocity of root
joint to all body parts as special ”joint” because its important
role in distinguishing the whole-body motion types. To
achieve flexible source-target correspondence, we will only
construct the common body part motion spaces of the source
and target skeletons in practice. For example, when we
retarget the motion from the structure of a normal person
to the skeleton of a disabled person with only one arm, we
construct only N=5 shared body parts. In addition to this,
we allow semantic-level correspondence when facing more
complex retargeting tasks such as bipeds to quadrupeds,
which will be discussed in Sec 7.

3.2 Overview

Figure 2 shows the overall architecture of our approach. Our
pipeline is similar to that of the motion Puzzle which is
designed for motion style transfer at the body part level.
However, our task differs from style transfer in that we
take the target skeleton representation rather than the target
motions as input. As shown on the left side of the figure,
the input of the framework is the source motion MA

T per-
formed by skeleton A ∈ A and targeted skeleton offsets
SB . The output of our framework is the motion MA7→B

T

that is performed by skeleton B ∈ B. Our architecture
can be divided into four modules, namely, skeleton encoder
EB

S , motion encoder EA
M, motion decoder DB

M and motion
discriminator CB. The skeleton encoder EB

S receives the
target skeleton offsets as input and encodes them by a multi-
layer perception to generate the skeleton code HB

S . The
target skeleton code is composed of the hidden features of
N body parts, each with d dimensions. The motion encoder
EA

M is mainly in charge of mapping the source motion
MA

T into the source motion code HA
M . It includes the

pose-aware attention network (PAN) for spatial modeling
and the convolution layers for temporal compression. The
motion code HA

M and the skeleton code HB
S will be fused in

an additive manner and pass through the motion decoder
DB

M to generate the retargeted motion MA7→B
T . Since our
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networks are trained in an unsupervised manner, we build
a discriminator (CB in Figure 2) for each structure to ensure
the retargeted motion falls onto the correspondence motion
manifold.

As stated above, in order to enhance the spatial modeling
capability of the model, we introduce the pose-aware atten-
tion network (PAN) in the motion encoder EA

M to extract
the source motion features in terms of body parts. In the
following sections, we will first elaborate on this network.

4 POSE-AWARE ATTENTION NETWORK

In this section, we will introduce the most important com-
ponent of the motion encoder, i.e, the pose-aware attention
network(PAN). We will first describe the joint embedding
and positional encoding, and finally illustrate our pose-
aware attention mechanism.

The choice of using attention networks for spatial fea-
ture extraction is based on the idea that the importance
of each joint in the kinematic chain is different and varies
dynamically with the pose (The visualization shown in Sec 6
will confirm this assumption). This prompts us to employ a
neural network to automatically learn the attention weights,
aggregating the motion characteristics at the body part level.
Transformer [32] achieves remarkable success in natural
language processing due to the capacity of the attention
mechanism which could automatically depict the associa-
tion of separate words in a sentence. Inspired by that, we
try to model the spatial relationships between joints using
the proposed pose-aware attention network.

4.1 Joint Embedding and Positional Encoding
The PAN will process the motion frame-by-frame. Given the
input pose represented as Mt ∈ R(J+1)×4 at the timestep t,
we need to first map the input to the hidden embedding
space through the joint embedding layer, which is shown in
Figure 3 (a). This step can be formulated as follows:

Φ(Mt;α) = Relu(Relu(MtW0 + b0)W1 + b1)W2 + b2 (1)

Where the parameters of the network α are defined by
α = {W0 ∈ R4×h,W1 ∈ Rh×h,W2 ∈ Rh×d, b0 ∈ Rh, b1 ∈
Rh, b2 ∈ Rd}. Here h is the number of hidden units used in
non-linear mapping which is 256 in our implementation and
the d is the dimensionality of the joint embedding space.

However, directly using the above joint feature is not
feasible since the network lacks the ability to know where
each joint is located in the kinematic chain. Inspired by
the positional encoding in the vanilla attention network
(Transformer), we use the joint-level positional encoding
to label each joint’s location in an additive manner. In our
case, we modify the mathematical formulation of positional
encodings and use the joint indices in the kinematic chain
as the position. The formula is represented as follows:

PEj,2i = sin(
j

basis2i/d
)

PEj,2i+1 = cos(
j

basis2i/d
)

(2)

where j indicates the index of the joint in the kinematic
chain, d equals to the dimensionality of the embeddings
in equation 1 and i ∈ [0, ..., d/2]. The basis which can

control the sinusoid’s frequency is often set to 10,000 as
in most transformer implementations. The joint-level posi-
tional encoding is bounded, smooth and dense compared
to the one-hot form and the vector dimension of PE is not
correlated with the number of skeleton joints, which makes
it very suitable for encoding in the case of skeleton structure
changes.

After calculating the PEj for each joint, we further
combine the joint embeddings with the positional encodings
in an additive manner, which is given by the following
equation:

Xt,j = Φ(Mt,j ;α) + PEj ∀j ∈ J (3)

where Mt,j represents the input feature of joint j in pose
Mt. Through the non-linear joint embedding and positional
encoding, the hidden representation Xt contains informa-
tion about each joint rotation and location in the kinematic
chain.

4.2 Pose-aware Attention at Body Part Level

As our retargeting strategy is to use body parts as shared
units, we need to integrate and pool joint-wise features
into body part-wise codes. Previous literature [41] proposes
to use the ”distribution tokens” to pool arbitrary-length
motion sequences into one latent space. Inspired by this
work, we similarly prepend the joint embeddings with
learnable tokens and only use the corresponding attention
outputs as a way to pool the joint-wise features into body
part level. Specifically, we introduce a learnable parameter
with the same dimension d as the joint embedding for
each body part, thus yielding a vector Y ∈ RN×d which
we called ”body part tokens”, where the N represent the
body part number we have defined. Figure 3(b) shows
the operations with an arm part as an example. For each
timestep t, the attention function first takes as input a
combination of the body part tokens and the joint-level
features Zt = [Y,Xt] ∈ R(N+J+1)×d and outputs the Query
vector Qt and Key-Value pair (Kt and Vt). the formulation
can be described as follow:

Qt = ZtWQ + bQ Kt = ZtWK + bK Vt = ZtWV + bV
(4)

where W[Q,K,V ] ∈ Rd×d and b[Q,K,V ] ∈ Rd are learnable
matrix and bias vectors, respectively.

Since we regard the body part as a retargeting unit,
we will use a mask matrix U ∈ R(N+J+1)×(N+J+1) to
isolate the body parts so that the final body-part features are
generated purely by pooling the inner-part joints’ features.
The mask matrix U is symmetric, where Ui,j = 0 means
that joint i and j are in the same body part and vice verse
Ui,j = −∞. The final output of the attention is computed as
a weighted sum of the values:

Attention(Qt,Kt, Vt, U) = softmax(
QtK

′

t + U√
d

)Vt (5)

where K
′

t represents the transpose of Kt and
√
d is used for

scaling to prevent pushing the softmax function into regions
where it has extremely small gradients [32]. The production
of Query Q and the transpose of Key K actually depict the
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Fig. 3. (a) Joint embedding and positional encoding. The raw joint features will first be embedded by MLP and then modified by positional encodings.
(b) Pose-aware attention at the body part level. We use the arm part as a sample to demonstrate the attention process. In the last layer of the
attention, the output features O

Yk
t corresponding to the ”body part token” will be retained, while other nodes will be discarded.

relationship of the joints. Specifically, the larger the dot-
production value of two joints reveals the stronger their
relationship. This attention operation can be stacked into
several layers to form the PAN, in our case we use 2 layers.
In the last layer, we discard the inner-part joint values and
only retain the ”body part token” values (see Figure 3(b) ).

Substitute equation 4 in equation 5, we can easily get
a new formulation Ψ(Zt;β), where the parameters are de-
fined by β = {WQ,WK ,WV , bQ, bK , bV , U} (all except U
are trainable). Our attention network is pose-aware since the
attention weights calculated by QtK

′

t are dependent on the
variable Zt, which is related to the input pose Mt according
to equation 3. Therefore, the proposed PAN can dynamically
extract the spatial features of the articulated motion.

As stated above, we only use the output corresponding
to the ”body part token”. Therefore, denote the complete
output of the Ψ(Zt;β) as Ot = [OY

t , OX
t ] ∈ R(N+J+1)×d,

we only keep the OY
t ∈ RN×d for pooling purpose.

5 ARCHITECTURE MODULES AND TRAINING PRO-
CESS

In this section, we will describe in detail the modules of our
architecture including the motion encoder, skeleton encoder,
motion decoder, and discriminator. Then we will show the
training/testing process and the loss functions we used.

5.1 Motion Encoder
The motion encoder is designed to extract the source motion
code HA

M from spatio-temporal dimension. The process of
motion encoding is shown in the blue part (EA

M) of Figure 2.

The motion encoder consists of two blocks, the pose-aware
attention PANi, i ∈ {1, 2} and the temporal convolutional
Convi, i ∈ {1, 2}. Given a source motion MA

T , the pose-
aware attention network generate the hidden features of
N body parts, i.e, OY = [OY1 , OY2 , ..., OYN ], OYk ∈ RT×d.
The PAN is mainly in charge of extracting spatial informa-
tion. As for the temporal compression, we use the multi-
level temporal convolution Conv, which is proven to be
influential in building motion manifold [48], [49] as well as
retargeting [11]. In our setting, the convolution block Conv
takes each body part features OYk as input, and the temporal
modeling process can be described as follows:

Convk = Relu(OYk ∗W conv
k + bconvk ) ∀k ∈ 1, 2, ..., N

(6)
where ∗ means the convolution operation, W conv

k ∈ Rh×d×w

is the weights matrix with temporal filter width of w,
and bconvk ∈ Rh is the bias with h hidden units in the
convolutional layer. The filter width w is set to 15 so that the
receptive field of the filter can roughly cover a half second
of motion, which is proven to be efficient in work [49].
We set the number of hidden units to 32 for each body
part because we experimentally find it can produce good
reconstruction and retargeting results. The stride of all the
convolution kernels is set to 2 for temporal compression
purpose. Through the Convi, i ∈ {1, 2} we eventually
obtain the shared motion code HA

M ∈ RT
4 ×N×d.

5.2 Skeleton Encoder

The skeleton encoder (see the pink part (EB
S ) of Figure 2)

aims to transform the target skeleton offsets into latent
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codes in terms of body parts. Since the offset vectors,
which express the skeleton topology and bone lengths, can
be regarded as a single canonical pose, we only spatially
encode the offset vectors. Given the target skeleton offsets
SB with L joints, we utilize a multi-layer perceptron (three
layers in our work) to map the raw vectors to the skeleton
code HB

S ∈ R1×N×d. Specifically, for each body part, we
concatenate the corresponding joints’ offsets to form a vector
Sk ∈ R3Lk , k ∈ [1, 2, ..., N ] and pass through the following
equation:

ω(Sk; γk) = Relu(Relu(SkWk0 + bk0)Wk1 + bk1)Wk2 + bk2
(7)

Where the parameters of MLP are defined by γk = {Wk0 ∈
R3Lk×h,Wk1 ∈ Rh×h,Wk2 ∈ Rh×d, bk0 ∈ Rh, bk1 ∈
Rh, bk2 ∈ Rd}. Here h is the number of hidden units which
is 64 in our implementation, and Lk is the number of joints
in kth body part. We stack the latent codes belonging to
different body parts to generate the final skeleton code
HB

S = [ω(S1; γ1), ..., ω(SN ; γN )] ∈ R1×N×d

5.3 Motion Decoder
Through the motion encoder EA

M and skeleton encoder EB
S ,

we obtain the source motion code HA
M and target skeleton

code HB
S , respectively. To integrate these two codes, we first

repeat the target skeleton code HB
S along the temporal axis

to make it consistent with the shape of HA
M and then add it

to HA
M. The reason we directly add them is our motion and

skeleton codes are both composed in the form of body parts.
Direct summation enables body-part codes to correspond to
each other (e.g., arm motion and arm skeleton) The motion
decoder (see green part (DB

M) in Figure 2) receives the
fused motion code H , and generate the retargeted motion
MA 7→B

T by Deconv blocks. The Deconv block consists of
up-sampling and deconvolution as follows:

Deconv = Relu(↑ H ∗W dec + bdec) (8)

Where the weights matrix W dec ∈ Rh×Nd×w and bias
vector bdec ∈ Rh are defined similar with formulation 6.
The difference is that we integrate all the body-part features
to synthesize the retargeted motion of the whole body i.e.,
the deconvolutional kernel W dec is not body part-wise and
will act on the fused features H to consider the relationship
between different body parts. The number of Deconv blocks
is 2 and we use the same kernel width and hidden size with
Conv blocks (see equation 6), but the stride of the kernel is
1. We set the up-sampling factor as 2 in order to recover
the temporal dimension layer by layer, and in the last
layer we restore the spatial dimension of the target motion,
i.e.Nd → (L + 1) × 4. It should be noted that the attention
weights computed in the motion encoder will not be used
for decoding. In the last layer, the Relu activation will not
be used and the convolution operation will synthesize the
retargeted motion performed by skeleton B with the same
sequence length T .

5.4 Motion Discriminator
The retargeted motion generated by the decoder needs
to fall onto the motion manifold of the target structure.
Therefore, we build a motion discriminator for each skeletal

structure as shown in the purple part (CB) of Figure 2. The
discriminator CB consists of several convolution layers and
receives the motion MA 7→B

T as input. Each layer of CB aims
to progressively compress the feature size from 4(L + 1) to
D/2, here the D is set to 256. The convolutional operation
is similar with equation 6, but not body part-related. The
final output of the motion discriminator is a one-dimension
feature in the range of (0, 1) by using the sigmoid function:

σ(x) =
1

1 + e−x
(9)

The average score indicates the naturalness of the retargeted
sequence. We train the discriminator and motion generator
alternatively to encourage the motion decoder to synthesize
natural-looking motions, the detailed process is demon-
strated in section 5.5

5.5 Training and Testing Process
One of the main difficulties our method faces is acquiring
paired motion data in real-world scenarios. Even if the same
actor repeatedly performs the same motion clip, there will
still be slight differences. We follow the training strategy of
SAN [11], which uses cyclic adversarial learning to train
the encoder-decoder pairs of different structure for the
purpose of self-supervision. This strategy can overcome the
data deficiency problem. Specifically, we take the motion
encoder, skeleton encoder, and motion decoder together
as a set called generator G = {EM, ES , DM}, we alter-
natively update the parameters between generator G and
discriminator C while fixing the parameters of the other
network. In our implementation, we employ the one-to-one
ratio (1 discriminator iteration per generator update) which
we empirically found can maintain the balance between the
generator and discriminator.

Fig. 4. (a) Training process. The blue route shows the reconstruction
process, which is used to train the encoder-decoder pairs. The red
route shows the retargeting and cyclic retargeting process. (b) Testing
Process. We discard the discriminator when inference.

Figure 4 (a) shows the training process (we take the
retargeting A → B as an example, B → A is symmetrically
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equivalent). We use the motion encoder EA
M to encode

the source motion MA
T of skeleton A and then there are

two branches (blue and red route in Figure 4). One is to
reconstruct the motion M̂A

T by motion decoder DA
M for

training the encoder-decoder pair (blue route in Figure 4).
The other branch (red route) is to utilize the decoder DB

M
with target skeleton code HB

S to synthesize the retargeted
motion MA 7→B

T . The motion discriminator CB will be used
to judge whether the retargeted motion is real or not. Since
the latent motion code HA

M is constructed by common body
parts, we want it could be shared between different skeletal
structure. Therefore, we extract the motion code HB

M of
the retargeted motion MA 7→B

T by the corresponding motion
encoder EB

M, i.e, we cyclic retarget the motion MA7→B
T to

M̄A
M. According to the idea, the HA

M should be similar
to HB

M. In addition to the latent code consistency, we also
require the consistency in the original motion space when
cycle retargeting, i.e., the motion M̄A

M should be similar to
the source motion MA

T .
In the testing process (see Figure 4 (b) ), the motion

discriminator will be discarded, and we use source motion
encoder EA

M and target skeleton encoder EB
S to synthesis the

retargeted motion MA7→B
T through the motion decoder DB

M.
It is worth noting that the source and target structure can
either be the same or different during training and testing.

5.6 Loss functions
According to the description of the training process, we are
able to conclude the loss functions of our networks, which
are similar to SAN [11]. We take the retargeting A → B as
an example to show the following loss terms:
Reconstruction loss. In order to construct encoder-decoder
pairs for different structure. We enforce the network to
reconstruct the input samples. The loss term can be formu-
lated as follow:

Lrec = ∥MA
T − M̂A

T ∥2 (10)

Where the M̂A
T is produced by its own motion encoder EA

M,
skeleton encoder EA

S , and motion decoder DA
M (see the blue

route in Figure 4(a) ).
Cycle consistency loss. We regard each body part as our
retargeting unit and suppose the motion encoder can pro-
duce the shared motion code HA

M. Therefore, to ensure the
motion code we learned as the common motion features,
we encourage the motion codes HA

M and HB
M to be as close

as possible to each other in the latent space. At the same
time, we encourage the motion MA

T is similar to the cyclic
retargeting motion M̄A

T in the original representation space
by the following loss term:

Lcyc = ∥HA
M −HB

M∥2 + ∥MA
T − M̄A

T ∥2 (11)

Adversarial loss Since we train our networks in an unsu-
pervised manner, we need a discriminator to ensure the
retargeted motion MA 7→B

T looks plausible and falls onto the
motion manifold of the corresponding structure B. There-
fore, we use the adversarial loss term described as follows:

Ladv = ∥CB(MBreal

T )∥2 + ∥1− CB(MA7→B
T )∥2 (12)

Where the MBreal

T are real examples of structure B. When
training the discriminator alone, we detach the retargeted

motion generated by the motion generator from the cal-
culation graph and maximize the loss function 12 to en-
courage the discriminator to distinguish between real data
and synthesized motions. While training the generator, we
minimize the function 12 as well as other loss terms to fool
the discriminator for obtaining more realistic retargeting
results.
Kinematic loss. The motion representation MA

T is sufficient
to determine a motion when combined with offsets SA. But,
sometimes people are more interested in the correspondence
in Cartesian space, especially the position of end-effectors
such as foot contacts. Therefore, we transform the local ro-
tation of each joint into 3D coordinates in Cartesian space by
forward kinematics (FK). Then we encourage the networks
to minimize the joint position errors when reconstruction
and cyclic retargeting.

Lkine = ∥FK(MA
T )−FK(M̄A

T )∥2+∥FK(MA
T )−FK(M̂A

T )∥2
(13)

where the M̄A
T and M̂A

T are cyclic retargeted and recon-
struction motions, respectively.

The final loss function can be summarized as follow:

Ltotal = λ1Lrec + λ2Lcyc + λ3Lkine + λ4Ladv (14)

In our implementation each λ value is set to 1, 2.5, 102, 1,
respectively.

5.7 Implementation Details

Our architecture is trained for 1000 epochs with a batch
size of 128 under the PyTorch platform. We use Adam
optimizer [50] with β1 = 0.9 and β2 = 0.999 to train the
generator and the discriminator, whose learning rates are
both set to 10−3. The training time is about 12 hours with
NVIDIA RTX 3090ti.

We localize motion frames by rotating the root on the
y-axis so the character is always facing one direction(z-axis
positive in our case) which is proven to be beneficial for the
convergence of neural networks [12]. After processing, the
information of global translation, as well as the y rotation
of the root, is contained in the velocity vector V̄ . To enable
training the network in batches, we cut the motions in the
datasets into motion clips with fixed length T = 64. All
examples of animation are downsampled at a rate of 30 fps,
so the clip length T is able to make the networks distin-
guish most types of motion without affecting the training
efficiency. We normalized each motion data MT by z-score
as follow:

MT =
(MT − µM)

σM
(15)

Where the µM and σM represent the mean and standard
deviation of all motion data MT in the training dataset,
respectively.

6 RETARGETING BETWEEN HUMANOID SKELE-
TONS

In this section, we mainly evaluate the effectiveness of the
proposed method in motion retargeting between humanoid
skeletons. For more qualitative results, please refer to the
supplementary video.
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Fig. 5. Qualitative comparisons between our method, SAN, modified NKN, and the corresponding ground truth. The first row displays the source
poses while the other rows show the results of the Retargeting. Flaws in the results are marked by red rectangular boxes and arrows.

6.1 Problem Setting

Humanoid retargeting is divided into two cases based on
the differences between the source and target structure. One
is intra-structural retargeting, i.e., the target skeleton has
the same structure and joint number, but different bone
proportions. The other is cross-structural retargeting, where
the target skeleton has a similar topology to the source
skeleton but a different number of joints. To take both
cases into account, we follow the work [11] and divide
the characters into two groups, A and B, each containing
skeletons with the same structure but different bone propor-
tions. Compared to structure B, the skeletons of structure A
contain extra joints on each limb(left/right arms, left/right
leg, spine, and neck).
Dataset. The Mixamo [16] is a 3D motion dataset with
rich motion types and contains more than 2000 sequences
performed by 29 distinct humanoid characters, of which
structure A includes 24 characters and structure B contains 5
characters. In our experiments, we select 20 characters in the
group A and 4 characters in the group B for training, and
the remaining characters are used for testing. In addition,
we follow the literature [5], [11] to clip the fingers of each
character and keep the main limb joints for simplification.
Comparison Methods. The methods we compared are
NKN [5], PMnet [6] and SAN [11]. NKN is a pioneering
work in deep learning-based motion retargeting. It uses
Recurrent Neural Network(RNN) to model the temporal
relationship of motion and combine the skeleton offsets

for intra-structural retargeting. PMnet [6] learns frame-by-
frame poses and overall movement separately for improv-
ing the retargeting accuracy. The most similar work to ours
is SAN [11], it extracts common skeletal codes by skeleton-
based graph convolution which can be applied to skeletons
with different structure. We will demonstrate in the follow-
ing sections that our attention-based spatial modeling at the
body part level is more conductive and flexible to the task
of motion retargeting.

6.2 Experiments and Evaluation

We use skeletal structure A to evaluate the intra-structural
retargeting. At this time, our modules in the architecture de-
generate to the special case, that is, the structure of the target
skeleton is the same as that of the source skeleton, both of
which are A. The different skeletons [A1, A2, ..., An] ∈ A are
distinguished by offsets SAi which represents the skeleton
topology and bone proportion.

To evaluate the cross-structural retargeting, we allow
the motions to be adapted between structure A and B.
Since the target skeleton has a different number of joints
than the source skeleton, both the vanilla NKN and PMnet
models are no longer applicable to this case due to the
requirement of the same dimension between the input and
output skeletons. Therefore, we modified these models by
retraining the encoder-decoder pair of each structure and
forcing the latent code dimension to be the same in order to
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Fig. 6. A jumping-to-land motion clip. We show the retargeting results of NKN, SAN, and our method along with the corresponding ground truth.
In the first row, we overlaid the transparent mesh on the skeleton. In the last row, we show the pose when standing(solid) and the pose when just
touching the ground (transparent). Retargeting flaws or server foot sliding are marked with red rectangles and arrows.

share among different structure. The modified models are
denoted by NKN∗ and PMnet∗, respectively.

Columns 1-3 in Figure 5 show the comparison examples
of intra-structural retargeting while the next three columns
present the cross-structural retargeting results. From the
comparison, we can find our method achieves more stable
and accurate results. In particular, because of the unsuper-
vised training manner, we are able to produce reasonable
results when there are little flaws in the ground truth (see
the middle column of the cross-structural retargeting in
Figure 5)

TABLE 1
Quantitative Evaluation on Maximo Dataset. We Report the Mean Per

Joint Position Error(MPJPE) over Test Clips, Normalized by the
Skeleton’s Height (multiplied by 103, similar with [11]).

Intra-Structural Cross-Structural
Copy rotations 8.86 N/A
NKN/NKN∗ 5.84 7.36

PMnet/PMnet∗ 4.93 6.88
SAN 2.76 2.25
Ours 0.50 1.62

6.2.1 Quantitative Evaluation
For quantitative evaluation, we use mean per joint position
error(MPJPE) as a metric and compare the generated results

with ground truth over I=106 test motion clips. The MPJPE
formula is described as follows:

E =
1

I|Cs||Ct|ht

I∑
i=1

∑
a∈Cs

∑
b∈Ct

∥FK(Ms7→t
Ti

)− FK(Mt
Ti
)∥2

(16)
Where the Ms 7→t

Ti
and Mt

Ti
are the retargeted motion from

skeleton s to t and ground truth motion from the Mixamo
dataset, respectively. FK is a forward kinematic function for
transferring the joint rotations to global positions. i denotes
the index of the test motion examples. Cs and Ct represent
the source and target skeleton set. In the intra-structural
retargeting case, the set Ct is the same as Cs, i.e., both are
the 4 testing skeletons in structure A. In cross-structural
retargeting, the source set Cs contains only 1 test skeleton
in the group B, and Ct contains the 4 skeletons in the group
A. In order to eliminate the error magnitude caused by
different skeleton sizes, we divide the joint position error
by target skeleton height ht.

The quantitative results are reported in Table 1. Since the
target skeleton has one-to-one joint correspondence with the
source skeleton in intra-structural retargeting, we addition-
ally compute the result of Copy rotations as a baseline, i.e.,
directly copying each joint rotation to the target skeleton.
From the table, we can see the performance of NKN and
PMnet is far behind SAN and our method since they feed



JOURNAL OF LATEX CLASS FILES 11

the networks with a simple concatenation of whole-body
joint features, without modeling the spatial characteristics
of the skeletons. Our approach outperforms all competing
methods in both intra-structural and cross-structural retar-
geting, attributing to the expressive power of the attention
mechanism and the body part strategy, which will be further
discussed.

Fig. 7. The foot-contact recall of different methods. Given different foot
velocity thresholds, we compute the foot-contact recall by equation 19.
A higher value indicates the foot movement is closer to the ground truth.

6.2.2 Evaluation of Foot-contact Recall
In addition to the overall accuracy of motion retargeting, the
movement of the end-effectors usually plays an important
role, especially when considering contacts with the ground,
which is crucial to our perception of human motions. How-
ever, the results produced by neural network systems often
do not satisfy the contact constraints. Therefore, there is
some literature like [7] utilizes numerical optimization in the
hidden space to iteratively improve the solution. We believe
that a good neural network prediction provides a better
initial solution for the optimization process and can speed
up the convergence of the algorithm, resulting in more
visually plausible motions. We conduct experiments and
visualizations to demonstrate that our pose-aware attention
mechanism can provide more stable results, mitigating foot-
sliding artifacts.

Figure 6 shows a jumping-to-land motion clip. We can
see the source motion as well as the ground truth without
any foot sliding after landing on the ground, but there are
artifacts in each of the predicted results. The comparison in
the last row of Figure 6 reveals that our method achieves
more stable results with slight sliding. Although we do not
specifically consider contact information during the train-
ing, the proposed method adaptively focuses attention on
the foot joint within the leg body part due to the pose-aware
attention mechanism, which is well visualized in Figure 8(a).

The visualization shows the contribution of each joint to
the corresponding body part in different postures. We take
the output of softmax in equation 5 at the first attention
layer and draw the attention weights of the joint embed-
dings Xt ∈ R(J+1)×d to body part tokens Y ∈ RN×d by
heatmap. The color near the top of the color bar indicates

that the joint contributes more to its corresponding body
part and vice versa. It is noticed that the feature of root
velocity will participate in the calculation of attention in
each body part since the root velocity is important for
distinguishing the motion types. We will take the maximum
weight value when visualizing if a joint belongs to more
than one body part and the color of the root is overlaid with
the root velocity ”joint”.

For different motion poses, the attention weights com-
puted by the network vary considerably. For example, in
sequence (b) of Figure 8, we can observe that in the case
of stationary pose (the first frame), the PAN focuses more
on the root/root velocity and the weight contributed by
each joint to the corresponding body part do not differ
much since the pose remains stationary. This meets our
intuition that the root velocity is important since it can
distinguish multiple motion categories and each joint con-
tributes similar weight at rest pose. However, it is not a static
rule, attention maps for other poses in Figure 8 (b) show
that our pose-aware attention mechanism has the ability to
dynamically extract the spatial features between joints.

To further demonstrate our attention mechanism can
mitigate foot-sliding artifacts, we use the foot-contact recall
as a metric and compare our approach with other methods.
Firstly, we collect all of the contact frames for each foot
in ground truth motion by velocity threshold, described as
follows:

cgt(t; ϵ) =

{
1 if ∥P gt

t,j − P gt
t−1,j∥2 < ϵ

0 otherwise
(17)

where the P gt
t,j represents the ground-truth position of foot

joint j at time t. We collect all the contact frames to form a
set Cgt = [t1, t2, ..., tn] and then check the retargeted motion
for foot contacts on these frames by the following equation:

ctar(ti; ϵ) =

{
1 if ∥P tar

ti,j
− P tar

ti−1,j∥2 < ϵ

0 otherwise
ti ∈ Cgt (18)

Finally, we are able to calculate the foot-contact recall by:

Rϵ =

∑
ti∈Cgt

ctar(ti; ϵ)∑
t∈T cgt(t; ϵ)

(19)

We plot the line graph (see Figure 7) given different thresh-
old ϵ and can find that our full approach outperforms all
competing methods at each threshold, further demonstrat-
ing the proposed method can produce more stable results.
We also conduct an ablation study on this metric, which will
be discussed in section 8.

6.2.3 Motion Retargeting from Human3.6M
To demonstrate the generalization of our method, we
present motion retargeting from the Human3.6 [17] char-
acters to Mixamo’s skeletons using the model trained from
Mixamo data only, which means that our architecture can
retarget unseen motions performed by unseen skeletons
to unseen/seen skeletons. We use the ground truth 3D
motions (joint rotations for our method and Copy rotation,
joint positions for NKN) from the human3.6M dataset, and
downsample them to 30fps.

In order to enable the encoder trained on the Mixamo
structural B (22 joints) to receive the articulated motion from
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Fig. 8. Visualization of the pose-aware attention. We visualize two motion sequences (a) and (b), temporally ordered from left to right. The
contribution of each joint to the corresponding body part is described by a heat map. Notably, we overlaid the attention weights of root rotation
and root velocity.

Human3.6M (17 joints), we did joint mapping similar to
NKN, which duplicates the joint positions in Human3.6M
to corresponding Mixamo joints. Since our method receives
joint rotations as input, we map the Spine rotation (H36M)
into the Spine(Mixamo) and set the rotation of Spine1 (Mix-
amo) to zero. At the same time, the offset of Spine1 will also
be set to zero, thus creating a zero-length bone in the test
time. A similar operation will be applied to follow map-
ping pairs: LeftShoulder into LeftShoulder and LeftArm,
RightShoulder into RightShoulder and RightArm, LeftFoot
into LeftFoot and LeftToeBase, RightFoot into RightFoot
and RightToeBase. Thus, our motion encoder trained for
structural B can receive the motions of human3.6M dataset.

As shown in Figure 9, our method can generalize to
unseen articulated motions and outperform NKN and Copy
Rotation in terms of realism and plausibility. For example,
we can see that directly copying the joint rotations of the
human3.6m’ motion to a target skeleton may produce un-
reasonable poses due to the structural differences between
the source and target skeletons.

For NKN, since the method retargets motions in an
autoregressive manner, the errors will accumulate as the
motion sequence becomes longer, resulting in the generated
character motion floating in the air (Row 2-4 in Figure 9).
In contrast, our temporal modeling is based on 1D convo-
lution, which makes the model more stable in long-term
retargeting. Please refer to the supplementary video for
more qualitative results.

To quantitatively evaluate each retargeting method, we
randomly select the source motion clips (300 frames per
clip) from the Human3.6M datasets and retarget them to
the unseen characters of Mixamo, then allow users to score
them for evaluation. Specifically, We run our user study
on a total of 20 users and choose Mousey, Mremireh, and
Vampire as test characters (neither our model nor NKN saw
them during training). We assign 5 retargeting clips to each
character, making a total of 15 questions. For each question,

we randomly place the retargeting results produced by each
method on the page, labeled A, B, and C. The participants
are asked to grade the similarity between the retargeted
and source motions on a scale of integers from 1 to 5, with
”1” denoting completely dissimilar and ”5” is completely
similar. Table 2 shows the results of the user study. We
can find that our method outperforms the NKN and Copy
Rotation in terms of the scores and has a smaller standard
deviation, which means that our method can achieve more
accurate and robust retargeting.

TABLE 2
User Study of Retargeting from Human3.6M to Characters of Mixamo.

Copy Rotation NKN Ours
3.06± 1.07 3.69± 1.04 3.78± 0.98

7 RETARGETING BETWEEN BIPED AND
QUADRUPED

Our retargeting framework is able to define more flex-
ible correspondence due to the body part retargeting
strategy and pose-aware attention mechanism. To demon-
strate this property, we design motion retargeting be-
tween quadrupeds and bipeds (see Figure 10 left and right
sides) on the more challenging datasets lafan1 [18] and
quadrupeds [13].

7.1 Problem Setting
Datasets. The lafan1 [18] is a human motion dataset that
includes walking, running, sitting, sprinting, fighting, etc.
There are 77 unique motion sequences, and we choose the
locomotion clips (i.e., BVH files starting with the keywords
aiming, run, walk, and sprint) because the motion mode
of quadrupeds is relatively simple (mainly locomotion).
We use subject 1 for testing and the rest for training. The
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Fig. 9. Qualitative results of retargeting from Human3.6M motions to
Mixamo skeletons (the Mixamo skeletons in rows 1-2 are unseen during
training, while the ones in rows 3-4 are seen). We use ground truth 3D
motions of the Human3.6M dataset as the source motions.

Fig. 10. Different corresponding strategies between our method and
SAN. (a) SAN extracts the primal skeleton features based on the neigh-
borhood relationship of the joints. (b) we construct the shared latent
space of the source and target skeletons in terms of body parts.

quadruped dataset [13] consists of 52 unique dog motion
sequences including idle, walk, run, sit, stand, and a few
jumps. We downsample the frame rate to 30 fps, consistent
with the lafan1 dataset. For train-test split, we split the
whole 52 motion files randomly and make sure the train-
test ratio is close to the bipedal dataset split. Please refer to
Appendix B for detailed information.

Figure 10 shows the differences between our method
and SAN [11] in terms of the corresponding strategies for
bipedal and quadrupedal skeletons. The two skeletons have
different structure, but the main limbs are topologically
similar. The core idea of SAN is to extract primal skeletal
codes through multiple pooling operations (see Figure 10

(a)). However, this strategy leads to a correspondence be-
tween the arm motions of bipeds and the foreleg motions of
quadrupeds, which is semantically implausible. Instead, we
define N=3 common body parts of bipeds and quadrupeds
(see Figure 10 (b)) rather than a primal skeleton. Since it is
difficult to find a spatial correspondence between the leg
part of this two structure, we directly pack the biped’s two
legs to construct a correspondence with the four legs of the
quadruped to ensure correctness on the semantic level. It
is worth noting that we do not encode the motion of the
arms of biped or the tail of quadruped, because these body
parts are difficult to construct a correspondence between
the structure. It means that the decoders corresponding to
each structure receive only the codes of common body parts
and decode the whole-body motions with these partial part
features.

During the training process, our PAN calculates the at-
tention weights for each body part, which function similarly
to the gating network in MANN [13] to learn to distinguish
between different actions and motion states by clustering.
Meanwhile, since we use temporal convolutional layers to
compress the motion, our architecture has a wider percep-
tual field than frame-by-frame methods and thus does not
take action labels as input. The naturalness of the generated
whole-body motion will be judged by the motion discrim-
inator, and the Ladv is used to force the motion decoder
to generate natural and reasonable motions. Meanwhile, we
will constrain only the common body parts in Lrec, Lcyc,
Lkine. We additionally add velocity constraints to the biped-
quadruped retargeting setting as follow:

Lvel = ∥ Vs

∥Vs∥
(
∥Vs∥ − vsmin

vsmax − vsmin
)− Vt

∥Vt∥
(
∥Vt∥ − vtmin

vtmax − vtmin
)∥2

(20)
Where the Vs and Vt represent the root joint velocity of
source and target skeletons. v∗min and v∗max indicate
the minimum and maximum velocity scale in the training
datasets, respectively. This loss term forces the velocity
to be mapped in proportion which can help us align the
motion manifolds of the two morphologies and circumvent
unreasonable retargeting. The coefficient of the velocity loss
term is λvel = 103 and other coefficients are the same as in
equation 14.

7.2 Experiments and Evaluation

When retargeting the quadruped motion to the bipedal
character, the results produced by SAN all present a ”bent”
posture (see the last two rows of Figure 11) because of
the unreasonable correspondence. Similarly, SAN fails on
retargeting from biped to quadruped (see the first two rows
of Figure 11) where only two legs are in contact with the
ground and the poses are very unnatural. The qualitative
results in Figure 11 show our method can produce more
realistic-looking results, demonstrating our body-part cor-
responding strategy is more reasonable. We also show the
results of PMnet∗, which performs between our method
and SAN since it does not consider any spatial relationship
between these two skeletons but only models the motion
along the temporal dimension.
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Fig. 11. Qualitative results of retargeting between bipedal and
quadrupedal. The leftmost column shows the source poses and the
columns on the right represent the retargeting results of modified PMnet,
SAN, and our method. The results are all evaluated on the test set.

7.2.1 Quantitative Evaluation
For quantitative evaluation, since the lafan1 and quadruped
datasets have no motion pairs, we evaluate the retargeting
by two metrics: Fréchet Inception Distance(FID) and user
study.

TABLE 3
We Evaluate the Fréchet Inception Distance(FID) on Lafan1 and

Quadruped Dataset.

Quadruped→Biped Biped→Quadruped
NKN∗ 93.81 169.47

PMnet∗ 62.55 217.11
SAN 376.36 763.89
Ours 51.68 132.76

FID is widely used to evaluate the overall quality of
generated motion [51], which depicts how similar the gen-
erated motions are to the real motions by comparison of
the deep feature distributions. As we know, similar motions
should have similar hidden features in the hidden layer of
the network, so we pre-train an auxiliary autoencoder [48]
to help us compute the FID scores (i.e. all the retargeted
motions and real motions will be fed into this network
for obtaining the hidden feature distribution), where the
formula is shown below:

FID = ∥m−mw∥2 + Trace(c+ cw − 2(ccw)
1
2 ) (21)

where the m and mw represent the mean values of the
latent features from the generated motions and real mo-
tions, respectively. while c and cw denote the corresponding
covariance matrices. The latent features we use are from
the L3 hidden layer of architecture [48]. For more detailed
information about the architecture, please refer to Appendix
A.

The comparison results are shown in Table 3 and a
smaller score indicates better performance. We compare our
method with vanilla SAN [11] as well as NKN∗ and PMnet∗

(see Sec 6.2 for their definitions). We denote the evaluation
item as Biped → Quadruped since we retarget the bipedal
motions to the quadruped and compute the distribution

with the real quadrupedal motions. Quadruped → Biped
can be calculated in the opposite direction. To make the
calculation of the metric insensitive to the root velocity
distribution, we uniformly sample 1200 motion clips (64
frames each) in each test set based on the root velocity
distribution to represent the real motion distribution. The
results shown in Table 3 illustrate that we outperform
other competing methods thanks to our advanced spatial
modeling and body-part corresponding strategy. SAN fails
on this task because the convolution operation based on the
skeleton neighborhood leads to an unreasonable semantic
correspondence between these two skeletons. NKN∗ and
PMnet∗ do not consider any spatial relationship, resulting
in inferior performance to our method.

Fig. 12. Qualitative results of ablation study. We remove some modules
from the architecture to compare with our full method. The outputs are
overlaid with the ground truth(transparent cyan skeleton).

7.2.2 User Study
FID is capable of depicting the naturalness of the retargeted
motions, but the similarity of retargeted motion to the
source is difficult to quantify in the absence of ground
truth. Therefore, we choose to judge the similarity by a
user study. For each direction of retargeting(Quadruped →
Biped,Biped → Quadruped) we choose three types of ac-
tion: idle,move, and sit. The participants are asked to grade
the similarity between the retargeted and source motionslike
Sec 6.2.3 We run this user study on a total of 20 users and
12 questions, each is a random sample from the datasets.
The action types are labeled automatically, similar to [34],
i.e. we determine whether the action type is move or idle by
the root velocity magnitude. As for the sit label, we detect
whether the hip/tail joint touches the ground during the
motion. Table 4 show the mean and standard deviation of
the performance scores of each method on different actions.
The scores show that we outperform other competing meth-
ods on most action types, which demonstrates our method
also achieves more visually plausible retargeting from a
subjective perspective.

8 ABLATION STUDY

We conduct an ablation study to further demonstrate the
contribution of each component in our architecture and help
us understand the design of our framework. We provide
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TABLE 4
Mean Subjective Ratings with Standard Deviation. We Ask the Users to Grade the Similarity Between the Retargeted and Source Motions.

Biped→ Quadruped Quadruped→ Biped
idle move sit idle move sit

NKN∗ 1.94±0.75 2.94 ±0.56 1.53±0.51 2.88±0.99 2.18±0.64 2.06±1.25
PMnet∗ 2.35±0.70 3.06 ± 0.75 1.82±0.73 3.82 ± 0.88 3.89±0.86 2.65±1.37

SAN 1.59±1.18 1.41±1.00 2.12±1.11 1.29±0.47 1.35±0.61 2.24±1.20
Ours 4.29±0.69 4.53 ± 0.62 4.53±0.51 3.76±1.03 4.06±0.75 3.76±1.03

several examples under different self-comparison settings in
Figure 12 and the quantitative results are detailed in Table 5.
The evaluation also can be found in the supplementary
video.

TABLE 5
Quantitative Results of Ablation Study. We Remove Some Components
of Our Architecture or Loss Terms from Our Full Method to Evaluate the

Retargeting Performance on the Mixamo Dataset.

Intra-Structural Cross-Structural
ours 0.50 1.62

w.o BP-strategy 0.58 2.29
w.o PAN 1.19 2.28

w.o Lkine 1.11 48.08
w.o Ladv 1.16 3.23

8.1 Effect of Pose-Aware Attention

To demonstrate the effect of the pose-aware attention mech-
anism in our architecture, we compare our full approach
with the model without the attention mechanism. Specif-
ically, we remove the attention operations described by
equation 4 and 5, replace them with a simple MLP layer, and
keep the rest of our architecture fixed. When the pose-aware
attention is removed, the model can not dynamically process
the spatial features. The results shown in Figure 12 (b)
and Table 5 both demonstrate that the pose-aware attention
mechanism can improve the accuracy of the retargeting. In
addition, the recall curves of foot contact in Figure 7 also
show that the proposed attention mechanism is beneficial to
improve the stability of the retargeting.

8.2 Effect of Body Part Strategy

To illustrate the effectiveness of the body part strategy (BP-
strategy), we replace the ”body part tokens” with ”whole
body token”, i.e., we remove the mask matrix U from
equation 5 so that all joints are associated with the only
”whole body token”. In addition, the convolution kernels in
equation 6 are not body-part related and will degrade to the
vanilla 1D convolution kernels. The results in Table 5 and
Figure 6 both show some decrease in performance for the
model without the BP-strategy. We believe that the body
parts provide a geometric prior for the neural networks
and using body parts as the retargeting units is beneficial
for network convergence when an unsupervised training
manner is used.

8.3 Effect of Kinematic Loss

We investigate the effectiveness of kinematic loss by re-
moving the loss term Lkine during training. The kinematic

loss can supervise the training in Cartesian space which is
more crucial to our perception. From Table 5, we observe
that our full model performs better than the model without
this loss, especially in the Cross-Structural retargeting since
the Cross-Structural retargeting is harder than the Intra-
Structural retargeting. We believe that the rotation is more
sensitive than the joint position since the rotation error of the
father joint will be amplified in the coordinate positions of
the child’s joint by matrix chain multiplication. Therefore,
we must introduce the kinematic loss when training the
networks.

8.4 Effect of Adversarial Loss

To evaluate the contribution of adversarial loss, we discard
the loss term Ladv and retrain our networks. The results in
Table 5 show that our full method outperforms the model
without adversarial loss term in both retargeting scenarios.
We believe that Ladv is very important in unsupervised
learning since it ensures that the motion generated by the
networks falls in the motion manifold of the corresponding
structure. The example shown in Figure 12 (a) also illustrates
the importance of the adversarial loss term in our retarget-
ing framework.

9 DISCUSSION AND FUTURE WORK

We propose a novel motion retargeting framework that uses
body parts as the basic retargeting units, which together
with our pose-aware attention mechanism can dynamically
extract the spatial features of the motion. Our architecture
can learn the shared motion space of body parts from
unstructured motion capture data, which can easily allow
retargeting among skeletons with different structure. Due
to our dynamical spatial modeling, our method allows for
more accurate and flexible retargeting compared to other
approaches. In particular, we significantly improve the per-
formance of motion retargeting between quadrupeds and
bipeds.

The main limitation of our work is the dependence on
motion statistics, i.e., we still require an amount of balanced
motion capture data for each structure. Both datasets need
to contain motions with various facing directions, velocity
directions, velocity intervals, and the same action types as
much as possible. We show in the supplemental video a
failure case when retargeting the backward walking of a
biped to a quadruped, where we find that the quadruped
moves unnaturally and without gaits. This is because, al-
though the biped training set includes backward walking,
the quadruped training set lacks such movement, making
it difficult to correspond when learning. When we test the
retargeting of bipedal artistic movements, such as hopping
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(unseen action) to the quadruped. We find that our method
can only use some corresponding laws learned from loco-
motion to generate the retargeted motion of the quadruped,
which cannot guarantee naturalness and rhythm. This mo-
tivates us to introduce more control signals to achieve
anthropomorphic retargeting in the future.

In some scenarios, we do not have access to the cap-
ture data of the target skeleton. For this problem, we can
consider introducing one-shot or zero-shot learning into
motion retargeting in the future, which can further expand
the application of automatic motion retargeting. Another
drawback of our work is that we currently rely on self-
supervised and adversarial learning to align the motion
manifolds of different structure. This correspondence may
result in some output being semantically inconsistent with
the source motion and lacking physical realism, e.g., distin-
guishing between sitting on the floor and sitting on a chair
when retargeting the biped motion to the quadruped. One
potential direction is to combine our spatial modeling with
the Dynamic Motion Reassembly from Virtual Chimeras [29]
to achieve physically realistic motion retargeting.

From another perspective, our approach is in fact to learn
the motion manifolds of various body parts. Therefore, we
are also able to implement motion editing or user interaction
in the latent space like [7], [48] to achieve body part level
control in the future. Recently, DeepPhase [52] starts to learn
motion manifold from a temporal alignment perspective,
which can extract periodic features of the whole body. This
alignment is very helpful for retargeting between different
organisms because it is difficult for us to obtain pairwise
motion data. We are able to introduce periodicity constraints
into the loss function to make the generated motions more
reasonable.
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